

ÍNDICE
 BIENVENIDOS
 SU AGUA
 RESULTADOS DE 2022
 MÁS INFORMACIÓN

ÍNDICE

Bienvenidos

Palabras del gerente

Su sistema hídrico

Su sistema hídrico

Laboratorio de calidad del agua

Control de conexión cruzada

DWSAPP

Resultados del análisis de 2022

Fluoruro

Dureza del agua

Posibles contaminantes

Acerca del plomo

PFAS

Definiciones clave

Tabla de calidad del agua

Más información

Recursos en línea

ÍNDICE BIENVENIDOS SU AGUA RESULTADOS DE 2022 MÁS INFORMACIÓN

BIENVENIDOS

California Water Service (Cal Water) y el Departamento de Recursos Hídricos de la ciudad de Bakersfield continúan comprometidos a proporcionar un suministro confiable de agua segura y limpia a sus clientes y comunidades. Debido a que las normativas sobre calidad del agua son más estrictas en los últimos años, nos mantenemos informados, incorporamos tratamientos o realizamos ajustes para garantizar que las cumplimos o las superamos, ya que nuestra máxima prioridad es proteger la salud y la seguridad de nuestros clientes.

En el sistema hídrico doméstico de la ciudad de Bakersfield de 2021 realizamos 46,653 análisis en 8,273 muestras de agua para detectar 181 componentes. Nos complace confirmar que el año pasado cumplimos con todas las normas de calidad de agua primarias y secundarias, tanto estatales como federales.

Sin embargo, nuestra promesa de proporcionar calidad, servicio y valor significa que nuestras tareas van más allá del tratamiento y el análisis. Significa mantener y actualizar la infraestructura necesaria para trasladar el agua desde la fuente hasta su grifo a través de una red de bombas, tanques y cañerías. También significa contar con expertos para solucionar emergencias y problemas cotidianos con el servicio. Si bien los costos para obtener, tratar, analizar, almacenar y distribuir el agua aumentan en todo el país, nuestra promesa también incluye hacer todo lo posible para trabajar de forma eficiente y garantizar que el agua sea asequible (menos de un centavo por galón en casi todas nuestras áreas de servicio).

Les invitamos a leer este informe anual sobre la calidad del agua, también llamado Informe sobre la confianza del consumidor, que detalla todos los componentes detectados en su suministro de agua en 2022 y muestra cómo se compara su agua en relación con las normas federales y estatales. También se ofrece información sobre problemas actuales en la calidad del agua y las medidas que tomamos para proteger su salud y seguridad.

Estamos a su disposición para responder todas las preguntas que tenga. Para contactarnos, puede llamarnos por teléfono o enviarnos un correo electrónico a nuestra oficina local, o ingresar al sitio web **es.calwater.com**. También puede conocer las noticias sobre el servicio de agua en nuestro sitio web y en nuestras páginas de Facebook, Twitter e Instagram. Si es titular de una cuenta, puede encontrar actualizaciones en su factura mensual y debe mantener su información de contacto actualizada en **ccu.calwater.com** para asegurarse de recibir información importante de emergencia y de otro tipo.

Atentamente, Tamara Johnson, gerenta de distrito, distrito de Bakersfield Art Chianello, gerente de recursos hídricos, ciudad de Bakersfield

ACCIONES

No hubo problemas importantes en su sistema hídrico en 2022 y no tenemos acciones recomendadas para nuestros clientes en esta área.

[Bakersfield District | 3725 South H Street, Bakersfield, CA 93304 | 661.837.7200]

ÍNDICE BIENVENIDOS

SU AGUA
 RESULTADOS DE 2022
 MÁS INFORMACIÓN

SU SISTEMA HÍDRICO

SU AGUA

Cal Water comenzó a brindar el servicio público de agua de alta calidad para el sistema hídrico doméstico de la ciudad de Bakersfield en 1976. Junto a la ciudad de Bakersfield, satisfacemos las necesidades de nuestros clientes con una combinación de agua subterránea local obtenida de 62 pozos activos (tratada siempre que sea necesario para mejorar su sabor y olor), agua superficial del río Kern (tratada con tecnología altamente desarrollada de filtración por membrana) y agua tratada comprada a Kern County Water Agency.

El programa integral de nuestra empresa que garantiza la alta calidad del agua incluye un minucioso monitoreo en todo el sistema y pruebas en nuestro moderno laboratorio. Además, garantizamos un suministro confiable y de alta calidad a través del constante mantenimiento y modernización de nuestras instalaciones. Juntos estamos evaluando las tecnologías de tratamiento para que los pozos presten servicio nuevamente y planeamos construir tres pozos nuevos.

CLORACIÓN

La cloración es la adición de cloro a los sistemas de agua potable. Es la forma más común de desinfección del agua potable, mata bacterias, virus y otros microorganismos que causan enfermedades o afecciones inmediatas. El cloro es eficaz y mantiene el agua segura en su recorrido por las tuberías hasta el grifo del consumidor.

CONSUMO INTELIGENTE DE AGUA

Tanto en años húmedos como secos, es importante que adoptemos el hábito de ahorrar agua todos los días. Usar el agua de forma inteligente nos garantiza tener agua en épocas de sequía y para las generaciones futuras.

Cal Water cuenta con un robusto programa de conservación del agua. Visite es.calwater.com/conservation para obtener más detalles.

Si tiene preguntas o inquietudes, comuníquese con nuestra oficina local, ya sea por teléfono al (661) 837-7200 o a través del enlace de contacto en es.calwater.com.

ÍNDICE BIENVENIDOS

SU AGUA

RESULTADOS DE 2022 MÁS INFORMACIÓN

CALIDAD DEL AGUA

LABORATORIO DE CALIDAD DEL AGUA

Los profesionales del agua recolectan muestras de todo el sistema hídrico para analizarlas en nuestro moderno laboratorio de calidad del agua, actualizado recientemente, que cuenta con la certificación anual del estricto Programa de Acreditación de Laboratorios Ambientales (ELAP).

Los científicos, químicos y microbiólogos analizan el agua para detectar 326 componentes con equipos que tienen la sensibilidad suficiente para detectar niveles de hasta una parte por billón. A fin de mantener la certificación de ELAP, todos nuestros científicos deben aprobar evaluaciones de aptitud de estudios ciegos por cada análisis de calidad del agua realizado. Los resultados del análisis de calidad del aqua se introducen en el Sistema de Gestión de Información del Laboratorio (LIMS), un sofisticado programa de software que nos permite reaccionar de forma rápida a los cambios en la calidad del agua y analizar las tendencias en la calidad del agua para realizar una planificación efectiva considerando las necesidades futuras.

CONTROL DE CONEXIÓN CRUZADA

Para garantizar que el agua de alta calidad que ofrecemos no se vea comprometida en el sistema de distribución, Cal Water cuenta con un sólido programa de control de conexión cruzada. El control de conexión cruzada es fundamental para garantizar que las actividades en las propiedades de los clientes no afecten el suministro de agua público. Nuestros especialistas de control de conexión cruzada garantizan que todos los ensamblajes antirretorno existentes se evalúen de forma anual, evalúan todas las conexiones, e implementan y administran la instalación de nuevos ensamblajes comerciales y residenciales.

La presencia de ciertos estados de presión, ya sea en nuestro sistema de distribución o en las cañerías del cliente, puede provocar retorno de flujo. Por lo tanto, los clientes son la primera línea de defensa. Un proyecto pequeño de reformas en el hogar sin las protecciones adecuadas puede crear una situación potencialmente peligrosa, por lo que respetar los códigos y las normas de plomería garantizará la seguridad del suministro de agua en la comunidad. Asegúrese de obtener el asesoramiento o los servicios de un plomero profesional calificado.

Muchas actividades de consumo de agua hacen uso de sustancias que, si se las deja ingresar al sistema de distribución, podrían ser estéticamente desagradables o, incluso, suponer riesgos para la salud. Estos son algunos ejemplos de las conexiones cruzadas más comunes:

 Mangueras de jardín conectadas a un grifo sin un interruptor de vacío simple para mangueras (disponible en una tienda de ferretería)

- Válvulas de llenado del depósito del inodoro indebidamente instaladas que no tienen el hueco de aire entre la válvula y el tubo de recarga
- Sistemas de irrigación de jardinería que no tienen el ensamblaje antirretorno adecuado instalado en la línea de suministro

La lista de materiales capaces de contaminar el sistema hídrico es muy grande. Según la Agencia de Protección Ambiental (EPA) de Estados Unidos, una amplia variedad de sustancias ha contaminado los sistemas de agua potable en todo el país debido a un control deficiente de las conexiones cruzadas. Algunos ejemplos incluyen:

- Anticongelante en sistemas de calefacción
- Sustancias químicas en las mangueras de jardín o cabezales de aspersores
- · Agua de color azul en depósitos de inodoro
- Agua carbonatada en dispensadores de refrescos

Los clientes deben asegurarse de que las cañerías cumplan con las normas locales para estos productos. Además, las leyes estatales exigen que ciertos tipos de instalaciones implementen y usen continuamente ensamblajes antirretorno en el medidor de agua. El personal de Cal Water encargado de controlar las conexiones cruzadas determinará si necesita instalar un ensamblaje antirretorno, dependiendo de la forma en que usted utiliza el agua.

ÍNDICE BIENVENIDOS

SU AGUA

RESULTADOS DE 2022 MÁS INFORMACIÓN

A finales de 2002, Cal Water presentó a la División de Agua Potable (DDW) un informe del Programa de Protección y Evaluación del Origen del Agua Potable (DWSAPP) para cada fuente de agua del sistema hídrico. El informe del DWSAPP identifica posibles fuentes de contaminación para ayudar a priorizar los trabajos de limpieza y prevención de la contaminación. Todos los informes están disponibles para ver o hacer copias en nuestra oficina.

Se considera que las fuentes de agua en el sistema de la ciudad de Bakersfield son más vulnerables a lo siguiente:

- Agricultura
- Aguas pluviales
- Aguas residuales
- Agua superficial (arroyos, lagos y ríos)
- Industrias madereras/tiendas minoristas de madera
- Carpinterías
- Industria papelera
- Metalúrgicas/enchapado de metales
- Revelado de fotos
- Fabricación de equipos eléctricos/electrónicos
- Amplios depósitos de almacenamiento de equipos
- Tanques de almacenamiento subterráneos y superficiales
- Plantas de tratamiento de agua potable
- Estacionamientos/centros comerciales
- Laboratorios de investigación
- · Viviendas de alta densidad
- Pozos (para el suministro de agua, actividades agrícolas, combustible, gas y geotérmicos)

- Descarga de contaminantes calificados como tales
- Parques
- Estaciones de servicios públicos (áreas de mantenimiento)
- · Industrias petrolera y química
- Almacenamiento de sustancias químicas/ pesticidas/fertilizantes/petróleo
- Gasolineras actuales y antiguas
- Tintorerías
- Dragados
- Talleres mecánicos
- Proyectos de recarga artificial (cuencas de redistribución)
- Sistemas de recolección cloacal
- Bocas de desagüe de aguas pluviales
- Sistemas sépticos de alta densidad

Alentamos a nuestros clientes a que se unan en nuestros esfuerzos para evitar la contaminación del agua y proteger nuestro recurso natural más valioso.

RESULTADOS DE 2022
MÁS INFORMACIÓN

FLUORURO

Las leyes estatales exigen que Cal Water agregue fluoruro al agua potable si existe financiación pública disponible para pagarlo y esta práctica está avalada por la Asociación Médica Estadounidense y la Asociación Odontológica Estadounidense para evitar el deterioro dental. En esta zona, es natural la presencia de fluoruro en bajos niveles y Cal Water no agrega ninguna cantidad al suministro de agua. Muéstrele la tabla de este informe a su odontólogo para que determine si es necesario recomendar suplementos con fluoruro a sus hijos.

DUREZA DEL AGUA

La dureza es una medición del magnesio, el calcio y los minerales carbonatos en el agua. El agua se considera blanda si su dureza es menor que 75 partes por millón (ppm), moderadamente dura entre 75 y 150 ppm, dura entre 150 y 300 ppm y muy dura a partir de los 300 ppm.

El agua dura generalmente no representa un problema para la salud, pero puede afectar a la espuma del jabón y es importante para algunos procesos industriales y de elaboración. El agua dura también puede ocasionar acumulaciones de minerales en las cañerías o en las calderas de agua.

Algunas personas con problemas de dureza de agua eligen comprar descalcificadores de agua. Sin embargo, algunos descalcificadores le agregan sal al agua, lo que puede causar problemas en las plantas de tratamiento de aguas residuales. Además, las personas que se someten a dietas bajas en sodio deben saber que algunos descalcificadores aumentan el contenido de sodio en el agua.

Para obtener más información sobre la dureza del agua, visite es.calwater.com/video/hardness.

Puede encontrar más información sobre la fluoración, la salud bucal y los problemas relacionados en el sitio web de la DDW.

Para obtener información general sobre la fluoración del agua, visite nuestro sitio web es.calwater.com/
waterquality/fluoride.

RESULTADOS DE 2022

MÁS INFORMACIÓN

Está contemplado que toda el agua potable, incluida el agua embotellada, contenga pequeñas cantidades razonables de algunos contaminantes.

La presencia de contaminantes no indica necesariamente que el agua represente un riesgo para la salud.

Para obtener más información acerca de los contaminantes y los efectos potenciales sobre la salud, llame a la Línea Directa de Agua Potable Segura de la EPA al (800) 426-4791.

Las fuentes de agua potable (tanto del grifo como embotellada) incluyen ríos, lagos, arroyos, estanques, embalses, manantiales y pozos. A medida que el agua viaja hacia la superficie de la tierra o por el terreno, disuelve de forma natural minerales y, en algunos casos, materiales radioactivos, y puede recoger sustancias remanentes de la presencia de animales o de las actividades humanas. Antes de ingresar al sistema de distribución, se trata la fuente de agua con componentes que superan los niveles máximos de contaminantes para reducir los niveles y cumplir las normas establecidas por los expertos de la salud pública.

ESTOS SON ALGUNOS DE LOS CONTAMINANTES QUE SE PUEDEN ENCONTRAR EN LAS FUENTES DE AGUA:

Contaminantes microbianos, como virus y bacterias, que pueden provenir de plantas de tratamiento de aguas residuales, sistemas sépticos, operaciones agropecuarias y vida silvestre.

Contaminantes inorgánicos, como sales y metales, que pueden estar presentes de forma natural o como resultado de la escorrentía de aguas pluviales en áreas urbanas, las descargas de aguas residuales industriales o domésticas, la producción de petróleo y gas, la minería o la agricultura.

Pesticidas y herbicidas, que pueden provenir de varias fuentes, como la agricultura, la escorrentía de aguas pluviales urbanas y los usos residenciales.

Contaminantes químicos orgánicos, incluidos los compuestos orgánicos sintéticos y volátiles, que son subproductos de los procesos industriales y la producción de petróleo, y que también pueden provenir de gasolineras, escorrentía de aguas pluviales en áreas urbanas, aplicaciones agrícolas y sistemas sépticos.

Contaminantes radioactivos, que pueden estar presentes de forma natural o como resultado de la producción de petróleo y gas, y de la minería.

A fin de garantizar que el agua del grifo sea apta para el consumo, la EPA y la DDW establecen normativas que limitan la cantidad de ciertos contaminantes en el agua proporcionada por los sistemas hídricos públicos. Las normativas de la Administración de Alimentos y Medicamentos (FDA) de Estados Unidos también definen límites de contaminantes en el agua embotellada, que debe ofrecer la misma protección para la salud pública.

Algunas personas podrían ser más vulnerables que el resto de la población general a los contaminantes presentes en el agua potable. Las personas inmunodeprimidas, tales como aquellas con cáncer que se someten a tratamientos de quimioterapia, las personas con trasplante de órganos, las personas con VIH/sida u otros trastornos del sistema inmunológico, algunos ancianos y los niños pueden correr más riesgos por infecciones. Estas personas deben buscar asesoramiento de los profesionales sanitarios acerca de los contaminantes del agua potable. Para conocer las pautas de la EPA y de los Centros para el Control y la Prevención de Enfermedades (CDC) sobre los medios adecuados para disminuir el riesgo de infección por criptosporidio y otros contaminantes bacterianos, llame a la Línea Directa de Agua Potable Segura.

RESULTADOS DE 2022

MÁS INFORMACIÓN

Dado que la presencia de plomo en el agua sigue siendo una de las principales preocupaciones para muchos estadounidenses, Cal Water desea garantizar la calidad de su agua. Cumplimos con los códigos de seguridad y salud que exigen el uso de materiales sin plomo en los repuestos del sistema hídrico, las reparaciones y las instalaciones nuevas. No contamos con tuberías de plomo conocidas en nuestros sistemas. Analizamos y tratamos (si es necesario) las fuentes de agua para garantizar que el agua que llega a los medidores del cliente cumpla con todas las normas de calidad del agua y no resulte corrosiva para los materiales de las cañerías.

El agua que suministramos a su hogar cumple con los estándares sobre la presencia de plomo. Sin embargo, si hay plomo, los niveles elevados pueden causar problemas de salud graves, especialmente en mujeres embarazadas y niños pequeños. El plomo presente en el agua potable proviene principalmente de los materiales y componentes utilizados para las tuberías y cañerías del hogar (por ejemplo, soldaduras de plomo usadas para unir cañerías de cobre, además de accesorios de bronce y plomo).

Cal Water es responsable de suministrar agua potable de alta calidad a los medidores de los clientes, pero no puede controlar la variedad de materiales usados en las cañerías y los accesorios de las propiedades. Si no consumió agua durante varias horas, puede minimizar la posible exposición al plomo si abre el grifo entre 30 segundos y 2 minutos antes de usar el agua para beber o cocinar.

Si le preocupa que haya plomo en el agua, puede solicitar que un laboratorio certificado la analice. Encontrará más información sobre el plomo en el agua potable llamando a la Línea Directa de Agua Potable Segura o en el sitio web www.epa.gov/safewater/lead.

En su sistema, los resultados de nuestro programa de control de plomo, realizado en conformidad con la regla del plomo y el cobre, se encontraron por debajo del nivel de acción necesario para tomar medidas en cuanto a la presencia de plomo.

Análisis de plomo en escuelas

El estado de California exigió que todas las escuelas públicas construidas antes de 2010 hubieran realizado un análisis de presencia de plomo en el aqua potable para el 1 de julio de 2019. Asumimos el compromiso de colaborar con el trabajo de nuestros distritos escolares para proteger a los alumnos y garantizar que el agua potable de sus escuelas esté por debajo de los límites normativos. Trabajamos con todos los distritos escolares de nuestra área de servicio que reciben alumnos desde el kindergarten hasta el 12º grado para desarrollar planes de muestreo, analizar muestras y realizar un control de seguimiento de las medidas correctivas que sean necesarias.

Para obtener más información, consulte nuestro sitio web sobre el **Análisis de plomo en escuelas**. Si necesita información específica sobre las escuelas locales, consulte el **portal en línea del estado**.

Regla del plomo y el cobre

La regla del plomo y el cobre nos exige analizar el agua en una cantidad representativa de hogares con tuberías con probabilidad de tener plomo y/o soldaduras de plomo para determinar la presencia de plomo y cobre, o valores que superen el nivel de acción. El nivel de acción es la concentración de un contaminante que, al superarse, desencadena medidas

correctivas para evitar transformarse en una preocupación para la salud. Si se superan los niveles de acción, tanto en el hogar del cliente como en el sistema, trabajamos junto con el cliente para investigar el problema o implementar un tratamiento de control de la corrosión a fin de reducir los niveles de plomo.

Inventario de tuberías con plomo (LSLI)

Nuestra máxima prioridad es proteger la salud v seguridad de nuestros clientes. Como parte de este compromiso. trabajamos para identificar y reemplazar tuberías y accesorios antiguos que puedan contener plomo en las instalaciones de los clientes. El proyecto de ley 1398 del Senado de California les exigió a todas las compañías de suministro de aqua de California que elaboraran un inventario de todos los materiales usados en las líneas de servicio de distribución y presentaran al estado una lista de las tuberías de plomo conocidas antes de 2018. Antes del 1 de julio de 2020, debían presentar ante el estado la lista de líneas de servicio desconocidas que podrían contener plomo, además de un plan para reemplazarlas. Las líneas conocidas se deben reemplazar lo antes posible.

Para obtener más información sobre el LSLI y datos específicos sobre cada sistema hídrico, visite el sitio web del estado.

RESULTADOS DE 2022

MÁS INFORMACIÓN

Las sustancias per y polifluoroalquiladas (PFAS) son compuestos artificiales que se usan en la fabricación de alfombras, ropa, telas para muebles, envoltorios de papel para comida y otros materiales (p. ej., utensilios de cocina) resistentes al agua, a la grasa o a las manchas. Además, estos compuestos también se utilizan en la extinción de incendios en los aeródromos, lo que ha provocado su filtración en el agua subterránea de algunas áreas.

En marzo de 2023, la EPA publicó una propuesta de normativa primaria nacional sobre el agua potable en relación con determinadas PFAS. La normativa propuesta establece un nivel máximo de contención del sulfonato de perfluorooctano (PFOS) y el ácido perfluorooctanoico (PFOA) de 4 ppt cada uno. Otras cuatro PFAS (PFNA, PFHxS, PFBS, y GenX) tendrían un límite de índice de peligrosidad combinado de 1.0; el cálculo del índice de peligrosidad determinaría si los niveles de estas PFAS como mezcla suponen un riesgo potencial.

Debido a que Cal Water sabía que se trataba de componentes que preocupaban a la población, hace años realizó pruebas proactivas en las fuentes activas de nuestros sistemas para detectar la presencia de estas PFAS. Si bien no era obligatorio hacerlo, considerábamos que era lo correcto. En todas las áreas del estado en las que las detecciones superaban los niveles a partir de los cuales la DDW recomienda a los proveedores de agua que tomen medidas (el nivel de respuesta), dejamos fuera de servicio las fuentes afectadas hasta que se instalara o pudiera instalarse un tratamiento.

Ninguna de nuestras fuentes de agua activas tiene niveles de estos seis compuestos PFAS superiores a los niveles de respuesta actuales de California. El nivel de respuesta, que es el nivel al que un sistema hídrico debe realizar cambios operativos para reducir la concentración de un compuesto, se establece con un margen de protección para todas las personas (incluidas las poblaciones sensibles) durante toda una vida de exposición. Actualmente estamos evaluando el impacto de la normativa propuesta en nuestros sistemas y todo tratamiento necesario en caso de que la normativa propuesta se adopte tal cual.

Además, consideramos necesario un enfoque global para abordar de forma adecuada la situación. Instamos a la EPA a establecer una norma coherente y con base científica lo antes posible, y apoyamos con firmeza la normativa estatal que prohibirá la venta y el uso de determinados productos que contengan PFAS, que exigirá la certificación de métodos de análisis precisos para detectar PFAS y establecerá una base de datos de acceso público que contendrá las fuentes de PFAS que ingresan a los suministros de agua. Además, iniciamos procesos legales para responsabilizar a los fabricantes de PFAS (y, en última instancia, impedir que nuestros clientes asuman los costos del tratamiento, en la medida de lo posible) y estamos buscando subsidios para compensar aún más el impacto en los costos de los clientes.

Los estudios indican que la exposición a largo plazo a las PFAS por encima de ciertos niveles podría tener efectos perjudiciales para la salud, incluidos efectos en el desarrollo del feto durante el embarazo o en niños, cáncer o efectos en el hígado, el sistema inmunitario, la tiroides y otras funciones. Todavía no se conocen todos los efectos que los compuestos PFAS pueden provocar en la salud; se sigue investigando al respecto.

Si bien tratamos el agua y cumplimos con las normas definidas por expertos de la salud pública, es importante que toda la población cuide y proteja el medioambiente y tome las medidas necesarias para evitar problemas en el suministro de agua.

Encontrará más información sobre las PFAS en el sitio web de la DDW.

RESULTADOS DE 2022

MÁS INFORMACIÓN

EN CUMPLIMIENTO: No supera ningún MCL, SMCL o nivel de acción, según lo determina la DDW. Para algunos compuestos, el cumplimiento se determina mediante un promedio de los resultados de una fuente durante un año.

EVALUACIÓN DE NIVEL 1: Una evaluación de nivel 1 es un estudio del sistema hídrico para identificar posibles problemas y determinar (si es viable) por qué se encontraron bacterias coliformes totales en el sistema.

EVALUACIÓN DE NIVEL 2: Una evaluación de nivel 2 es un estudio muy detallado del sistema hídrico para identificar posibles problemas y determinar (si es viable) por qué se incumplió el MCL de E. coli y/o por qué se encontraron bacterias coliformes totales en el sistema en varias ocasiones.

NIVEL MÁXIMO DE CONTAMINANTE (MCL): Nivel máximo permitido de un contaminante en el agua potable. Los MCL primarios se establecen tan cerca de los PHG (o MCLG) como sea posible en términos económicos y tecnológicos. Los MCL secundarios (SMCL) se establecen para proteger el olor, el sabor y la apariencia del agua potable.

OBJETIVO DE NIVEL MÁXIMO DE CONTAMINANTE (MCLG): Nivel de un contaminante en agua potable por debajo del cual no existen riesgos conocidos ni previstos para la salud. Los MCLG son establecidos por la Agencia de Protección Ambiental de EE. UU.

NIVEL MÁXIMO DE DESINFECTANTE RESIDUAL (MRDL): Nivel máximo permitido de un desinfectante en el agua potable. Existen evidencias sólidas de que es necesario agregar un desinfectante para controlar los contaminantes microbianos.

OBJETIVO DEL NIVEL MÁXIMO DE DESINFECTANTE RESIDUAL (MRDLG):

Nivel de un desinfectante en agua potable por debajo del cual no existen riesgos conocidos ni esperados para la salud. Los MRDLG no reflejan los beneficios del uso de desinfectantes para controlar los contaminantes microbianos.

NIVEL DE NOTIFICACIÓN (NL) Y NIVEL DE RESPUESTA (RL): Niveles salubres recomendados para contaminantes no regulados en el agua potable. Los emplea la DDW para brindar pautas a sistemas de agua potable.

ABREVIATURAS ESTÁNDARES

AL	Nivel de acción Máx. Máximo								
Mín.	Mínimo	N/A	No aplicable						
NL	Nivel de notificación	otificación NTU Unidad nefelométrica de turbid							
ND	Componente no detectado								
pCi/L	Picocurios por litro (medida de radiación)								
ppb	Partes por mil millones o microgramos por litro (µg/L)								
ppm	Partes por millón o miligramo	os por li	tro (mg/L)						
ppq	Partes por mil billones o pico	ogramos	s por litro (pg/L)						
ppt	Partes por billón o nanogran	nos por	litro (ng/L)						
μS/cm	Microsiemens/centímetro								

NORMAS DE AGUA POTABLE PRIMARIAS (PDWS): Los MCL, los MRDL y las TT de contaminantes que afectan la salud, junto con sus requisitos de control, informe y tratamiento del agua.

OBJETIVO DE SALUD PÚBLICA (PHG): Nivel de un contaminante en agua potable por debajo del cual no existen riesgos conocidos ni previstos para la salud. La Agencia de Protección Ambiental de California determina los PHG sin tener en cuenta la viabilidad tecnológica o económica.

NIVEL DE ACCIÓN REGULADORA (AL): La concentración de un contaminante, cuyo exceso indica que debe realizarse un tratamiento o deben cumplirse otros requisitos de un sistema hídrico.

TÉCNICA DE TRATAMIENTO (TT): Un proceso requerido para reducir el nivel de un contaminante en el agua potable.

DIFERENCIAS Y EXCEPCIONES: Permisos de la Junta Estatal de Control de Recursos de Agua (Junta Estatal) para superar un MCL o no cumplir con una técnica de tratamiento en ciertas condiciones.

RESULTADOS DE 2022
 MÁS INFORMACIÓN

PRESENTACIÓN DE LA TABLA

Cada año, Cal Water lleva a cabo cientos de miles de pruebas para controlar la calidad de nuestra agua. Si se detecta algún contaminante, se incluye en este informe anual sobre la calidad del agua. Sin embargo, la mayoría de los contaminantes que analizamos no se detectan, por lo que no se incluyen en la lista.

Consulte el sitio web sobre los **Contaminantes potenciales** para obtener una lista completa de los contaminantes que analizamos.

En la tabla los resultados del análisis de calidad del agua se dividen en cuatro secciones importantes: "Normas de agua potable primarias", "Normas de agua potable secundarias", "Contaminantes controlados por el estado con niveles de notificación" y "Compuestos no regulados". Las normas primarias protegen la salud pública ya que limitan los niveles de ciertos componentes en el agua potable. Las normas secundarias se definen para sustancias que no afectan la salud, pero podrían afectar el sabor, el olor o el aspecto del agua. Para su información, se incluyen algunas sustancias no reguladas (la dureza y el sodio, por ejemplo). El estado nos permite controlar algunos contaminantes menos de una vez al año porque sus concentraciones no cambian con frecuencia. Algunos de nuestros datos, si bien son representativos, tienen más de un año de antigüedad.

ORIGEN DE LAS SUSTANCIAS

- BB Subproducto principal de la biodegradación de la contaminación de aguas subterráneas por TCE y PCE
- BN Nematocida prohibido que probablemente permanece en el suelo debido a escorrentías/lixiviación de su anterior uso en soja, algodón, viñedos, tomates y árboles frutales
- BT Nematocida prohibido que probablemente permanece en el suelo debido a escorrentías y lixiviación causadas por el cultivo de granos y frutas
- CF Descargas de fábricas de productos químicos industriales
- DI Subproducto de la desinfección del agua potable
- DS Desinfectante añadido al agua potable para su tratamiento
- EN Presente naturalmente en el medioambiente
- ER Erosión de depósitos naturales
- EX Disolvente para extraer y eliminar grasas; utilizado en la fabricación de productos farmacéuticos y de piedra, arcilla y vidrio; fumigante
- FD Descargas de fábricas, tintorerías y talleres de automóviles (desengrasante de metales)
- FE Residuos de personas y animales
- FL Aditivo del agua que ayuda a fortalecer los dientes; descargas de fábricas de aluminio y fertilizantes
- FR Escorrentía y lixiviación del uso de fertilizantes; lixiviación de tanques sépticos y aguas residuales

- IA Descargas de fábricas de productos químicos industriales y agrícolas; lixiviación de vertederos de desechos peligrosos; uso como eliminador de barniz, pintura y disolvente para tareas de limpieza y mantenimiento, y agente de limpieza y desengrasante; subproducto de la fabricación de otros compuestos y pesticidas
- IC Corrosión interna de los sistemas de plomería doméstica
- IM Descargas de fabricantes industriales
- IO Sustancias que forman iones al estar en el agua
- IW Desechos industriales
- MD Descargas de instalaciones para desengrasar metales y otras fábricas
- MF Descargas de fábricas de metales
- OC Escorrentías de huertos; desechos por fabricación de vidrio y productos electrónicos
- OD Descargas de desechos de perforaciones petrolíferas y de refinerías de metales
- OM Materiales orgánicos presentes de forma natural
- PG Descargas de refinerías de metales, petróleo y vidrio; descargas de minas y fabricantes de productos químicos; escorrentías de actividad ganadera (aditivo en los alimentos)
- PT Descargas de refinerías de petróleo
- RU Escorrentía/lixiviación de depósitos naturales
- RS Residuos de algunos procesos de tratamiento del agua superficial
- SO Escorrentías del suelo
- SW Influencia del agua de mar
- UN Pérdidas de tanques subterráneos de gas
- WD Lixiviación de conservantes de la madera
- UR Componentes no regulados sin fuente determinada y sin información estandarizada sobre la "fuente de la sustancia"

Nuestros equipos de análisis son tan sensibles que pueden detectar componentes de hasta 1 parte por billón. Eso es el equivalente a 1 pulgada en 15 millones de millas

RESULTADOS DE 2022
 MÁS INFORMACIÓN

CALIDAD DEL AGUA DE 2022

Normas de agua potable primarias

	.~			BUG	_		ıa			
Microbiológicos	Año del análisis	Unidad	MCL	PHG (MCLG)	En cumplimiento		Mensual m	nás elevado	Fuente	
Coliformes fecales y E. coli	2022	Muestras Positivas	0 ¹	(0)	Sí	0				FE
	Año del			PHG	En	Agua subterránea KCWA ²			WA ²	
Radiológicos	análisis	Unidad	MCL	(MCLG)	cumplimiento	Rango	Promedio	Rango	Resultado	Fuente
Actividad bruta de partículas alfa	2014–2022	pCi/L	15	(0)	Sí	ND-8.5	ND	N/A	2.11	ER
Uranio	2014–2022	pCi/L	20	0.43 (0)	Sí	ND-14	1.7	N/A	ND	ER
						Agua su	bterránea	oterránea KCWA		
Químicos inorgánicos	Año del análisis	Unidad	MCL	PHG (MCLG)	En cumplimiento	Rango	Promedio	Rango	Promedio/ Resultado	Fuente
Arsénico ³	2020–2022	ppb*	10	0.004 (0)	Sí	ND-16	ND	2–3	1	ER, OC
Bario	2020–2022	ppm	1	2 (2)	Sí	ND-0.10	ND	N/A	ND	ER, OD
Fluoruro	2016–2022	ppm	2	1 (4.0)	Sí	ND-0.84	ND	0.24-0.30	0.27	ER, FL
Níquel	2020–2022	ppb	100	12	Sí	ND-51	ND	N/A	ND	ER, MF
Nitrato (como N) ⁴	2016–2022	ppm	10	10 (10)	Sí	ND-6.1	1.8	ND-0.10	0.03	ER, FR
Selenio	2019–2022	ppb	50	30 (50)	Sí	ND-11	ND	N/A	ND	PG, ER

^{*} ppm, ppb, ppt y ppq son siglas en inglés; ppb "parts per billion" (en español: "partes por mil millones"), ppt "parts per trillion" (en español: "partes por billón"), ppq "parts per quadrillion" (en español: "partes por mil billones"), y ppm "partes por millón", igual que en inglés.

CBK

¹ Se supera si las muestras de rutina y repetidas arrojan un resultado positivo para coliformes totales y para E. coli, si el sistema no toma muestras repetidas después de una muestra de rutina positiva para E. coli, o si el sistema no analiza una muestra repetida positiva para coliformes totales para E. coli.

² Una parte del suministro de agua del sistema se adquiere de Kern County Water Agency (KCWA). Los resultados del agua suministrada por KCWA podrían ser ND para algunos contaminantes. Para estos casos, colocamos "N/A", ya que no contamos con la información.

³ El nivel promedio de arsénico fue ND, con un nivel máximo de 16 ppb. Aunque se cumple con los estándares federales y estatales sobre la presencia de arsénico, su agua potable contiene niveles bajos de arsénico. Los estándares sobre la presencia de arsénico ponderan el análisis actual de los posibles efectos del arsénico en la salud y los costos de eliminar el arsénico del agua potable. La EPA continúa investigando los efectos en la salud de los niveles bajos de arsénico, cuyas altas concentraciones, según se sabe, provocan cáncer en los seres humanos y está relacionado con otros efectos en la salud, como daños en la piel y problemas circulatorios.

⁴ El nivel promedio de nitrato fue de 1.8 ppm, con un nivel máximo de 6.1 ppm. Estamos monitoreando exhaustivamente los niveles de nitrato. La presencia de nitrato en el agua potable en niveles superiores a 10 ppm constituye un riesgo para la salud de los bebés menores de seis meses de edad. Tales niveles de nitrato en el agua potable pueden interferir con la capacidad de la sangre de un bebé para transportar el oxígeno, lo cual puede producir una enfermedad grave. Entre los síntomas se incluyen: dificultad para respirar y un color azulado en la piel. En otras personas, los niveles de nitrato superiores a 10 ppm pueden afectar también la capacidad de la sangre para transportar el oxígeno. Es el caso de las mujeres embarazadas y personas con determinados trastornos enzimáticos específicos. Si usted se encarga del cuidado de un bebé o está embarazada, debe buscar asesoramiento con su proveedor de atención médica.

RESULTADOS DE 2022
 MÁS INFORMACIÓN

CALIDAD DEL AGUA DE 2022

(continúa)

	Año del			PHG	En		na			
Plomo y cobre	análisis	Unidad	AL	(MCLG)	cumplimiento	Perce	entil 90	Muest	ras > AL	Fuente
Cobre	2022	ppm	1.3	0.3	Sí	0	.14	0 d	0 de 50	
Plomo	2022	ppb	15	0.2	Sí	1	ND	0 d	e 50	IC, IM, ER
						Agua subterránea		КС	:WA	
Contaminantes orgánicos sintéticos (SOC), incluso pesticidas y herbicidas	Año del análisis	Unidad	MCL	PHG (MCLG)	En cumplimiento	Rango	Promedio	Rango	Promedio/ Resultado	Fuente
1,2,3-tricloropropano ¹	2019–2022	ppt	5	0.7	Sí	ND-5	ND	N/A	ND	IA
Dibromocloropropano	2017–2022	ppt	200	1.7 (0)	Sí	ND-57	ND	N/A	ND	BN
Dibromuro de etileno	2017–2022	ppt	50	10 (0)	Sí	ND-21	ND	N/A	ND	PT, UN, BT
	Año del			PHG	En	Agua subterránea		KCWA		
Compuestos orgánicos volátiles	análisis	Unidad	MCL	(MCLG)	cumplimiento	Rango	Promedio	Rango	Resultado	Fuente
1,1-Dicloroetano	2016–2022	ppb	5	3	Sí	ND-0.88	ND	N/A	ND	EX
1,1-Dicloroetileno	2016–2022	ppb	6	10 (7)	Sí	ND-1.5	ND	N/A	ND	CF
cis-1,2-Dicloroetileno	2016–2022	ppb	6	13 (70)	Sí	ND-0.80	ND	N/A	ND	CF, BB
Tetracloroetileno (PCE)	2016–2022	ppb	5	0.06 (0)	Sí	ND-1.8	ND	N/A	ND	FD
Tricloroetileno (TCE)	2016–2022	ppb	5	1.7 (0)	Sí	ND-0.87	ND	N/A	ND	MD
	Año del			PHG	En		Distribución er	n todo el sistem	na	
Subproductos de la desinfección	análisis	Unidad	MCL	(MCLG)	cumplimiento	Ra	ingo	Promedio a	anual mayor	Fuente
Ácidos haloacéticos totales (THAA)	2022	ppb	60	N/A	Sí	NE	D-41	2	25	DI
Trihalometano total (TTHM)	2022	ppb	80	N/A	Sí	NE	D-56	;	35	DI
	Año del				En	Distribución en todo el sistema		na		
Desinfectantes	análisis	Unidad	MRDL	MRDLG	cumplimiento	Ra	ıngo	Promedio		Fuente
Cloro libre	2022	ppm	4	4	Sí	0.28	8–2.2	1	1.3	DS

¹ En una muestra del sistema de Bakersfield, el nivel de 1,2,3-TCP (TCP) fue igual al MCL. Sin embargo, el cumplimiento se basa en un promedio de cuatro trimestres. El promedio anual de TCP es menor que el MCL y cumple con los valores normativos. Algunas personas que durante varios años beben agua que contiene TCP que excede el MCL pueden presentar un mayor riesgo de contraer cáncer.

RESULTADOS DE 2022
 MÁS INFORMACIÓN

CALIDAD DEL AGUA DE 2022

(continúa)

Normas de agua potable secundarias

						Agua subterránea		KCWA		
Contaminantes	Año del análisis	Unidad	SMCL	PHG (MCLG)	En cumplimiento	Rango	Promedio	Rango	Promedio/ Resultado	Fuente
Aluminio	2020–2022	ppb	200	600	Sí	ND-69	1.8	ND-120	67	ER, RS
Cloruro	2016–2022	ppm	500	N/A	Sí	7.2–290	25	10.4–14.7	12.2	RU, SW
Color	2016–2022	UNIDADES	15	N/A	Sí	ND-5.0	1.8	N/A	<2.5	ОМ
Conductancia específica ¹	2016–2022	μS/cm	1600	N/A	Sí	183–1890	332	213–326	264	SW, IO
Cobre	2018–2022	ppm	1	0.3	Sí	ND-0.06	ND	N/A	ND	IC, ER, WD
Hierro	2016–2022	ppb	300	N/A	Sí	ND-140	ND	N/A	ND	RU, IW
Olor	2016–2022	T.O.N.	3	N/A	Sí	ND-1.0	ND	1.4–2.0	1.6	ОМ
Sulfato	2016–2022	ppm	500	N/A	Sí	4.7–490	33	32.4–55.8	43.1	RU, IW
Total de sólidos disueltos ²	2016–2022	ppm	1000	N/A	Sí	32–1200	200	115–182	148	RU
Turbidez (agua subterránea)	2016–2022	NTU	5	N/A	Sí	ND-1.2	0.17	0.04-0.07	0.06	SO
Zinc	2018–2022	ppm	5	N/A	Sí	ND-0.12	ND	ND-0.056	0.027	RU, IW

¹ En una muestra del sistema de la ciudad de Bakersfield, la conductancia específica excedió el SMCL. No se dejó correr la fuente lo suficiente antes de tomar la muestra y nosotros no suministramos esta agua al sistema de distribución. El promedio anual constante (RAA) es menor que el SMCL. El cumplimiento del SMCL se basa en un RAA. Controlamos los niveles para garantizar que no se supere el SMCL. El SMCL se define para proteger a los consumidores contra efectos estéticos desagradables, como el color, el gusto y el olor, y de las manchas en accesorios de plomería y en la ropa durante el lavado. Exceder el SMCL no significa un riesgo para la salud.

² En una muestra del sistema de la ciudad de Bakersfield, el total de sólidos disueltos excedió el SMCL. No se dejó correr la fuente lo suficiente antes de tomar la muestra y nosotros no suministramos esta agua al sistema de distribución. El RAA es menor que el SMCL. El cumplimiento del SMCL se basa en un RAA. Controlamos los niveles para garantizar que no se supere el SMCL. El SMCL se define para proteger a los consumidores contra efectos estéticos desagradables, como el color, el gusto y el olor, y de las manchas en accesorios de plomería y en la ropa durante el lavado. Exceder el SMCL no significa un riesgo para la salud.

RESULTADOS DE 2022
 MÁS INFORMACIÓN

CALIDAD DEL AGUA DE 2022

(continúa)

Contaminantes regulados por el estado con niveles de notificación

Año de		Año dol		PHG	En	Agua subterránea		KCWA		
Contaminantes	análisis	Unidad	NL	(MCLG)	cumplimiento	Rango	Promedio	Rango	Resultado	Fuente
Boro	2016–2022	ppm	1	N/A	Sí	ND-0.31	0.13	N/A	0.18	UR
Ácido perfluorohexanosulfónico (PFHxS) ¹	2020–2022	ppt	3	N/A	Sí	ND-7.0	0.11	N/A	N/A	UR
Ácido perfluorooctanosulfónico (PFOS) ¹	2020–2022	ppt	6.5	N/A	Sí	ND-8.4	0.20	N/A	N/A	UR
Vanadio	2016–2022	ppb	50	N/A	Sí	ND-24	6.9	N/A	ND	UR

Regla de monitoreo de contaminantes no regulados (UCMR)

	Año dol	Año del		PHG		Agua subterránea		KCWA		
Componentes	análisis	Unidad	MCL	(MCLG)	En cumplimiento	Rango	Promedio	Rango	Promedio	Fuente
Germanio	2020	ppb	N/A	N/A	N/A	ND-3.8	ND	_	_	UR
Ácidos haloacéticos cinco	2020	ppb	N/A	N/A	N/A	ND-2.6	ND	_	_	UR
Ácidos haloacéticos seis bromados	2020	ppb	N/A	N/A	N/A	ND-6.2	2.6	_	_	UR
Ácidos haloacéticos nueve	2020	ppb	N/A	N/A	N/A	ND-33	15	_	_	UR

Las sustancias per y polifluoroalquiladas (PFAS) son una amplia clase de sustancias químicas que incluyen el ácido perfluorooctanoico (PFOA), el ácido perfluorooctanosulfónico (PFOS), el ácido perfluorobutanosulfónico (PFBS) y el ácido perfluorohexanosulfónico (PFHxS). Se determinaron NL para estos cuatro compuestos. Los NL son niveles salubres recomendados no reglamentarios. Se definen para componentes que pueden ser candidatos a normas más adelante. Los estudios indican que la exposición a largo plazo al PFOS/PFOA/PFBS/PFHxS por encima de ciertos niveles podría tener efectos perjudiciales en la salud, incluidos efectos en el desarrollo del feto durante el embarazo o en lactantes; cáncer; o efectos en el hígado, el sistema inmunitario, la tiroides, y otros efectos. Cal Water trabaja en estrecha colaboración con la DDW y la EPA para realizar controles exhaustivos y ha identificado la mejor tecnología de tratamiento disponible para el tratamiento de las PFAS.

RESULTADOS DE 2022
MÁS INFORMACIÓN

CALIDAD DEL AGUA DE 2022

(continúa)

Compuestos no regulados

						Agua su	bterránea	KWCA		
Componentes	Año del análisis	Unidad	MCL	PHG (MCLG)	En cumplimiento	Rango	Promedio	Rango	Promedio/ Resultado	Fuente
Alcalinidad (total)	2016–2022	ppm	N/A	N/A	N/A	27–150	80	54–78	65	UR
Calcio	2016–2022	ppm	N/A	N/A	N/A	2.9–180	29	14.7–28.2	20.7	UR
Cromo hexavalente ¹	2014–2018	ppb	N/A	0.02	N/A	ND-1.8	ND	N/A	0.005	UR
Dureza (total)	2016–2022	ppm	N/A	N/A	N/A	7.5–440	79	47–90.9	66.7	UR
Potasio	2016–2022	ppm	N/A	N/A	N/A	ND-2.5	1.3	2.13–2.85	2.46	UR
Magnesio	2016–2022	ppm	N/A	N/A	N/A	ND-8.0	2.2	2.5–5	3.63	UR
Sodio	2016–2022	ppm	N/A	N/A	N/A	ND-230	34	24.6–32.3	27.7	UR
Ácido perfluorodecanoico (PFDA)	2020–2022	ppt	N/A	N/A	N/A	ND-4.0	0.03	N/A	N/A	UR
Ácido perfluorononanoico (PFNA)	2020–2022	ppt	N/A	N/A	N/A	ND-5.2	0.09	N/A	N/A	UR
рН	2016–2022	Unidades	N/A	N/A	N/A	6.3–9.3	7.9	7.15–7.30	7.24	UR

¹ El 11 de septiembre de 2017 quedó sin efecto el MCL anterior de 0.010 mg/L (10 ppb) para cromo hexavalente. Actualmente no hay ningún MCL implementado. El Estado recomienda que se informen los resultados de cromo hexavalente por encima del límite de detección de 1 ppb.

ÍNDICE
BIENVENIDOS
SU AGUA
RESULTADOS DE 2022

MÁS INFORMACIÓN

Gracias por tomarse el tiempo de aprender más sobre la calidad del agua.

Puede encontrar aún más información en es.calwater.com.

Visite nuestro sitio web para obtener información sobre su cuenta,
el historial de consumo de agua, las tarifas del agua y el sistema hídrico.

Calidad. Servicio. Valor.º

- Recursos de conservación
- Plomo en el agua
- Tratamiento y desinfección del agua
- Protección del suministro de agua