#### **CALIFORNIA WATER SERVICE**

# REPORT ON WATER QUALITY RELATIVE TO PUBLIC HEALTH GOALS IN THE BAKERSFIELD (CA1510003) WATER SYSTEM JULY 1, 2022

#### BACKGROUND

Provisions of the California Health and Safety Code (Section 116470 [b]) specify that water systems serving more than 10,000 connections shall prepare a special report by July 1, 2022, if their water exceeds any Public Health Goals (PHGs) after each compliance period. PHGs are non-enforceable goals established by the Cal-EPA's Office of Environmental Health Hazard Assessment (OEHHA). The statute also requires that water suppliers use the Maximum Contaminant Level Goals (MCLGs) adopted by USEPA for constituents for which OEHHA has not adopted a PHG.

There are a few constituents that are routinely detected in water systems, at levels usually well below the drinking water standards, for which no PHG or MCLG has yet been adopted (e.g., Total Trihalomethanes). These constituents will be addressed in a future required report after a PHG has been adopted.

In accordance with the Health and Safety Code (reference 1), if a constituent was detected in the water system's supply during 2019, 2020, or 2021 at a level exceeding an applicable PHG or MCLG, it will be identified in this report. Additional information includes the numerical public health risk associated with the MCL, plus the PHG or MCLG; the category or type of risk to health that could be associated with each constituent; the best available treatment technology that could be used to reduce the constituent level; and an estimate of the cost to install that treatment if it is appropriate and feasible.

#### WHAT ARE PHGs?

PHGs are set by OEHHA, which is part of Cal-EPA, and are based solely on public health risk considerations. None of the practical risk-management factors that are considered in the rulemaking process by the USEPA or the California State Water Resources Control Board's Division of Drinking Water (DDW) in setting drinking water standards, otherwise known as Maximum Contaminant Levels (MCLs). These factors include analytical detection capability, treatment technology available, benefits, and costs.

PHGs and MCLGs are not mandatory and therefore compliance is not legally required by any public water system.

# WATER QUALITY DATA CONSIDERED

All water quality data collected by our water system between 2019 and 2021 to determine compliance with drinking water standards from sources that supplied the water system and not treated to remove to given constituent are reported. This data is also presented in our annual consumer confidence reports, which are electronically available at: <a href="https://www.calwater.com/water-quality-reports/">https://www.calwater.com/water-quality-reports/</a>.

#### **GUIDELINES FOLLOWED**

The Association of California Water Agencies (ACWA) formed a workgroup that prepared guidelines for water utilities to use in preparing these required reports. ACWA guidelines are followed, with the exception reporting all detected compounds with a PHG, even if the constituent does not have an MCL. No guidance is available from DDW.

# BEST AVAILABLE TREATMENT TECHNOLOGY AND COST ESTIMATES

Both the USEPA and DDW adopt best available technologies (BATs), which are the best-known methods of reducing contaminant levels to the MCL. Costs can be estimated for such technologies; however, since many PHGs and all MCLGs are set much lower than the MCL, it is not feasible to determine what treatment is needed to further reduce a constituent to an established goal. Many established goals are set below analytical detection limits, which means that the level has been lowered to zero. In some cases, installing treatment to further reduce very low levels of one constituent may have adverse effects on other aspects of water quality. Additionally, since there is little data readily available to estimate the cost of treatment to achieve some of the goal levels, use of this "BAT" may still not achieve the PHG or MCLG and the costs may be significantly higher to do so. Costs estimates for treatment were taken from Tables 1 – 3 in the Suggested Guidelines for Preparation of Required Reports on Public Health Goals to satisfy requirements of California Health and Safety Code Section 116470(b), prepared by Association of California Water Agencies (ACWA), April 2022.

# CONSTITUENTS DETECTED THAT EXCEED A PHG OR MCLG

The following is a discussion of constituents that were detected in one or more of our drinking water sources at levels above the PHG, or alternatively above the MCLG. As previously stated, the numerical

value for PHGs and MCLGs are often set below detectable levels. Therefore, the Detection Limit for Purposes of Reporting (DLR) is provided for each constituent. DLR is the lowest quantity of a substance that can be distinguished within a stated confidence limit, generally one percent. Constituents reported in this section were detected above the method DLR and PHG, and in sources that supplied the system during 2019, 2020 and 2021.

# 1,2-DICHLOROPROPANE (DCP)

The PHG for 1,2-Dichloropropane (DCP) is 0.5  $\mu$ g/L, and the MCL is 5  $\mu$ g/L. DCP is detected above the DLR and PHG in 1 active wells without treatment. The numerical health risk at the PHG is  $1 \times 10^{-6}$ , which means one excess cancer case per one million people. The numerical health risk at the MCL is  $1 \times 10^{-5}$ , which means one excess cancer case per 100,000 people. The category of health risk is carcinogenicity.

BATs for treatment/removal of DCP are granular-activated carbon (GAC) or packed tower aeration. The estimated cost to install and operate a treatment system that will reliably reduce the DCP concentration to the PHG is approximately \$1.78/1,000 gallons treated. This would result in an assumed increased cost for each service connection of \$15.92 per year.

#### 1,2,3-TRICHLOROPROPANE (TCP)

The PHG for 1,2,3-Trichloropropane (TCP) is 0.0007 ppb and the MCL is 0.005 ppb. The DLR is 0.005 ppb. TCP is detected above the DLR and PHG without treatment in 3 active wells. The category of health risk for TCP is carcinogenicity. The numerical health risk at the PHG is  $1 \times 10^{-6}$ , which means one excess cancer case per one million people. The numerical health risk at the MCL is  $7 \times 10^{-6}$ , which means seven excess cancer case per one million people.

Granular activated carbon (GAC) is the BAT for TCP removal. The detection limit is 0.005 ppb, which is an order of magnitude higher than the PHG. Therefore, the cost to remove TCP is estimated based on non-detect, or less than 0.005 ppb. The estimated cost to install and operate a treatment system that will reliably reduce the TCP concentration in wells to non-detect is approximately \$1.78/1,000 gallons treated. This would result in an assumed increased cost for <u>each service connection</u> of \$47.75 per year.

### ARSENIC (As)

The PHG for arsenic is 0.004 ppb, and the MCL is 10 ppb. The DLR is 2.0 ppb. Arsenic is detected above the DLR and PHG without treatment in 29 active wells. The category of health risk for arsenic is carcinogenicity. The numerical cancer health risk for the PHG is one person per one million, and for the MCL it is 2.5 per one thousand people.

BATs for treatment/removal of arsenic are activated alumina, coagulation filtration, ion exchange, lime softening, and reverse osmosis. All of these technologies generate waste that is sometimes classified as hazardous waste. The costs below do not reflect the cost of disposing of hazardous waste.

The estimated cost to install and operate a treatment system that would reliably reduce arsenic concentrations to the PHG would be approximately \$2.39/1,000 gallons treated. This would result in an assumed increased cost for <u>each service connection</u> of \$619.79 per year.

#### **RADIUM 226 AND 228**

The PHG for radium 226 is 0.05 pCi/L (picocuries per liter), and 0.019 pCi/L for radium 228. The MCL for the combined 226 and 228 is 5 pCi/L. The Detection Limit for Purposes of Reporting (DLR) for either radium 226 or 228 is 1 pCi/L. Radium 226 is detected without treatment in 0 active wells, and radium 228 is detected without treatment in 4 active wells. The numerical cancer health risk for the PHG is one person per one million, and for the MCL it is 3 per ten thousand people. The category of health risk associated with radium is carcinogenicity.

The BAT for the treatment/removal of radium to concentrations below the MCL is reverse osmosis. Reverse-osmosis technology requires a high-pressure differential across a membrane, and usually requires pre-filtration of the water to remove large particulates.

The estimated cost to install and operate a treatment system that will reliably reduce the radium concentration is approximately \$2.40/1000 gallons treated. This would result in an assumed increased cost for <u>each service connection</u> of \$85.85 per year.

#### TETRACHLOROETHYLENE (PCE)

The PHG for PCE is 0.06 ppb, and the MCL is 5 ppb. The DLR is 0.5 ppb. PCE is detected above the DLR and PHG without treatment in 10 active wells. The numerical health risk for PCE at the PHG is 1x10<sup>-6</sup>, which means one excess cancer cases per one million people. The numerical risk at the MCL is 8x10<sup>-5</sup>, which means eight excess cancer cases per 100,000 people. The category of health risk associated with PCE is carcinogenicity (cancer).

BATs for the treatment/removal of PCE are granular-activated carbon (GAC) and air stripping. The estimated cost to install and operate a GAC treatment system that would reliably reduce the PCE level to zero would be approximately \$1.78/1,000 gallons treated. This would result in an assumed increased cost for each service connection of \$159.17 per year.

# <u>Trichloroethylene (TCE)</u>

The PHG for TCE is 1.7 ppb, and the MCL is 5 ppb. TCE is detected above the PHG without treatment in 3 active wells. The numerical health risk at the PHG is  $1 \times 10^{-6}$ , which means six excess cancer cases per one million people. The numerical risk at the MCL is  $3 \times 10^{-6}$ , which also means three excess cancer cases per one million people. The category of health risk associated with TCE is carcinogenicity (cancer).

BATs for the treatment/removal of TCE are granular-activated carbon (GAC) and air stripping. The estimated cost to install and operate a GAC treatment system that would reliably reduce the TCE level to zero would be approximately \$1.78/1,000 gallons treated. This would result in an assumed increased cost for each service connection of \$47.75 per year.

# **URANIUM AND GROSS ALPHA PARTICLE ACTIVITY**

The PHG for uranium is 0.43 pCi/L (picocuries per liter), and the MCL is 20 pCi/L. Uranium is detected without treatment in 23 active wells. The numerical health risk at the PHG is  $1x10^{-6}$ , which means one excess cancer case per one million people from lifetime exposure to uranium in drinking water. The numerical health risk at the MCL is  $5x10^{-5}$ , which means five excess cancer cases per 100,000 people.

There is no California PHG for gross alpha particle activity; however, the MCLG level is set at 0 pCi/L.

The MCL is 15 pCi/L. Gross alpha particle activity is detected without treatment in 4 active wells. The category of health risk associated with uranium and gross alpha particle activity is carcinogenicity. The numerical health risk for the MCGL of zero pCi/L is zero.

The BAT for the treatment/removal of uranium is ion exchange. The estimated cost to install and operate an ion exchange treatment system that would reliably reduce the uranium and gross alpha particle activity concentration is approximately \$1.63/1,000 gallons treated. This would result in an assumed increased cost for <u>each service connection</u> of \$335.25per year.

# RECOMMENDATIONS FOR FURTHER ACTION

The drinking water quality of the Bakersfield water system meets all State of California and USEPA drinking water standards set to protect public health. Cal Water will continue to assure the protection of public health by researching and examining emerging treating technologies on an ongoing basis while taking into account health protection benefits and cost.

#### **REFERENCES:**

- No.1 Excerpt from California Health & Safety Code: Section 116470 (b)
- No.2 Table of Regulated Constituents with MCLs, PHGs, or MCLGs
- No.3 Bakersfield Water System's 2019, 2020, and 2021 Consumer Confidence Reports
- No.4 Health Risk Information for Public Health Goal Exceedance Reports prepared by the

  Office of Environmental Health Hazard Assessment, California Environmental Protection

  Agency, February 2022
- No. 5 Suggested Guidelines for Preparation of Required Reports on Public Health Goals to satisfy requirements of California Health and Safety Code Section 116470(b), prepared by Association of California Water Agencies (ACWA), April 2022